The Eilenberg-Borsuk duality theorem
نویسندگان
چکیده
منابع مشابه
Unveiling Eilenberg-type Correspondences: Birkhoff's Theorem for (finite) Algebras + Duality
The purpose of the present paper is to show that: Eilenberg–type correspondences = Birkhoff’s theorem for (finite) algebras + duality. We consider algebras for a monad T on a category D and we study (pseudo)varieties of T– algebras. Pseudovarieties of algebras are also known in the literature as varieties of finitealgebras. Two well–known theorems that characterize varieties and pseudovarie...
متن کاملDigital Borsuk-Ulam theorem
The aim of this paper is to compute a simplicial cohomology group of some specific digital images. Then we define ringand algebra structures of a digital cohomology with the cup product. Finally, we prove a special case of the Borsuk-Ulam theorem fordigital images.
متن کاملThe Borsuk-Ulam Theorem
I give a proof of the Borsuk-Ulam Theorem which I claim is a simplified version of the proof given in Bredon [1], using chain complexes explicitly rather than homology. Of course this is a matter of taste, and the mathematical content is identical, but in my opinion this proof highlights precisely where and how the contradiction arises. 1 Statements and Preliminaries Theorem 1.1 (Borsuk-Ulam). ...
متن کاملThe Borsuk-Ulam Theorem
For simplicity, we adopt the following rules: a, b, x, y, z, X, Y , Z denote sets, n denotes a natural number, i denotes an integer, r, r1, r2, r3, s denote real numbers, c, c1, c2 denote complex numbers, and p denotes a point of En T. Let us observe that every element of IQ is irrational. Next we state a number of propositions: (1) If 0 ≤ r and 0 ≤ s and r2 = s2, then r = s. (2) If frac r ≥ fr...
متن کاملExtensions of the Borsuk-Ulam Theorem
Extensions of the Borsuk-Ulam Theorem by Timothy Prescott
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae (Proceedings)
سال: 1972
ISSN: 1385-7258
DOI: 10.1016/1385-7258(72)90030-3